Con-CDVAE: A method for the conditional generation of crystal structures
Computational Materials Today, ISSN: 2950-4635, Vol: 1, Page: 100003
2024
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
Article Description
In recent years, progress has been made in generating new crystalline materials using generative machine learning models, though gaps remain in efficiently generating crystals based on target properties. This paper proposes the Con-CDVAE model, an extension of the Crystal Diffusion Variational Autoencoder (CDVAE), for conditional crystal generation. We introduce innovative components, design a two-step training method, and develop three unique generation strategies to enhance model performance. The effectiveness of Con-CDVAE is demonstrated through extensive testing under various conditions, including both single and combined property targets. Ablation studies further underscore the critical role of the new components in achieving our model’s performance. Additionally, we validate the physical credibility of the generated crystals through Density Functional Theory (DFT) calculations, confirming Con-CDVAE’s potential in material science research.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know