A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+ and U-Net
Computers and Electronics in Agriculture, ISSN: 0168-1699, Vol: 189, Page: 106373
2021
- 175Citations
- 113Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Research on the recognition and segmentation of vegetable diseases in simple environments based on deep learning has achieved a relative success. However, in complex environments, the image background often contains elements similar to the representation of leaves and disease spots, making it difficult for the recognition model to segment leaves and disease spots. Consequently, the segmentation precision is significantly reduced, which further affects the accuracy of disease severity classification. In response to this problem, while discussing and analyzing the advantages and disadvantages of DeepLabV3+ and U-Net, this study proposed a two-stage model that fuses DeepLabV3+ and U-Net for cucumber leaf disease severity classification (DUNet) in complex backgrounds. In the first stage, this model uses DeepLabV3+ to segment leaves from complex backgrounds. The images of leaves obtained after segmentation are used as the input for the second stage. In the second stage, U-Net is used to segment the diseased leaves to obtain disease spots. Finally, the ratio of the pixel area of disease spots over the pixel area of leaves is calculated so as to classify the disease severity. The experiment results show that the proposed model is able to segment leaves and disease spots from complex backgrounds in a step-by-step manner so as to complete disease severity classification. The leaf segmentation accuracy reached 93.27%, the Dice coefficient of disease spot segmentation reached 0.6914, and the average disease severity classification accuracy reached 92.85%. Compared with other models, the model proposed in this study has higher robustness, segmentation precision and classification accuracy, providing important ideas and methods for classifying the severity of cucumber leaf diseases in complex backgrounds.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0168169921003902; http://dx.doi.org/10.1016/j.compag.2021.106373; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113197614&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0168169921003902; https://dx.doi.org/10.1016/j.compag.2021.106373
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know