LDS-YOLO: A lightweight small object detection method for dead trees from shelter forest
Computers and Electronics in Agriculture, ISSN: 0168-1699, Vol: 198, Page: 107035
2022
- 71Citations
- 44Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The detection and location of dead trees are extremely important for the management and estimating naturalness of the forests, and timely replanting of dead trees can effectively resist natural disasters and maintain the stability of the ecosystem. Dead trees have the characteristics of small targets and inconspicuous detail information, which leads to the problem of difficult identification. In this paper, we propose a novel lightweight architecture for small objection detection based on the YOLO framework, named LDS-YOLO. Specifically, a novel feature extraction module is proposed, it reuses the features from previous layers for the purpose of dense connectivity and reduced dependence on the dataset. Then, for Spatial pyramid pooling (SPP) with the introduction of SoftPool method for retaining detailed information about the object to ensure that small targets are not missed. In the meantime, a depth-wise separable convolution with a small number of parameters is used instead of the traditional convolution to reduce the number of model parameters. We evaluate the proposed method on our self-made dataset based UAV captured images. The experimental results demonstrate that the LDS-YOLO architecture performs well in comparison with the state-of-the-art models, with AP of 89.11% and parameter size of 7.6 MB, and can be used for rapid detection of dead trees in shelter forests, which provides a scientific theoretical basis for forestry management of Three North shelter Forest.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0168169922003520; http://dx.doi.org/10.1016/j.compag.2022.107035; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129757103&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0168169922003520; https://dx.doi.org/10.1016/j.compag.2022.107035
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know