PlumX Metrics
Embed PlumX Metrics

RoadSens: An integrated near-field sensor solution for 3D forest road monitoring

Computers and Electronics in Agriculture, ISSN: 0168-1699, Vol: 229, Page: 109710
2025
  • 0
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

RoadSens is a platform designed to expedite the digitalization process of forest roads, a cornerstone of efficient forest operations and management. We incorporate stereo-vision spatial mapping and deep-learning image segmentation to extract, measure, and analyze various geometric features of the roads. The features are precisely georeferenced by fusing post-processing results of an integrated global navigation satellite system (GNSS) module and odometric localization data obtained from the stereo camera. The first version of RoadSens, RSv1, provides measurements of longitudinal slope, horizontal/vertical radius of curvature and various cross-sectional parameters, e.g., visible road width, centerline/midpoint positions, left and right sidefall slopes, and the depth and distance of visible ditches from the road’s edges. The potential of RSv1 is demonstrated and validated through its application to two road segments in southern Norway. The results highlight a promising performance. The trained image segmentation model detects the road surface with the precision and recall values of 96.8 % and 81.9 %, respectively. The measurements of visible road width indicate sub-decimeter level inter-consistency and 0.38 m median accuracy. The cross-section profiles over the road surface show 0.87 correlation and 9.8 cm root mean squared error (RMSE) against ground truth. The RSv1’s georeferenced road midpoints exhibit an overall accuracy of 21.6 cm in horizontal direction. The GNSS height measurements, which are used to derive longitudinal slope and vertical curvature exhibit an average error of 5.7 cm compared to ground truth. The study also identifies and discusses the limitations and issues of RSv1, which provide useful insights into the challenges in future versions.

Bibliographic Details

Mostafa Hoseini; Helle Ross Gobakken; Stephan Hoffmann; Csongor Horvath; Johannes Rahlf; Jan Bjerketvedt; Stefano Puliti; Rasmus Astrup

Elsevier BV

Agricultural and Biological Sciences; Computer Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know