RDDL: A systematic ensemble pipeline tool that streamlines balancing training schemes to reduce the effects of data imbalance in rare-disease-related deep-learning applications
Computational Biology and Chemistry, ISSN: 1476-9271, Vol: 106, Page: 107929
2023
- 2Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef1
- Captures8
- Readers8
Article Description
Identifying lowly prevalent diseases, or rare diseases, in their early stages is key to disease treatment in the medical field. Deep learning techniques now provide promising tools for this purpose. Nevertheless, the low prevalence of rare diseases entangles the proper application of deep networks for disease identification due to the severe class-imbalance issue. In the past decades, some balancing methods have been studied to handle the data-imbalance issue. The bad news is that it is verified that none of these methods guarantees superior performance to others. This performance variation causes the need to formulate a systematic pipeline with a comprehensive software tool for enhancing deep-learning applications in rare disease identification. We reviewed the existing balancing schemes and summarized a systematic deep ensemble pipeline with a constructed tool called RDDL for handling the data imbalance issue. Through two real case studies, we showed that rare disease identification could be boosted with this systematic RDDL pipeline tool by lessening the data imbalance problem during model training. The RDDL pipeline tool is available at https://github.com/cobisLab/RDDL/.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1476927123001202; http://dx.doi.org/10.1016/j.compbiolchem.2023.107929; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85166289704&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37517206; https://linkinghub.elsevier.com/retrieve/pii/S1476927123001202; https://dx.doi.org/10.1016/j.compbiolchem.2023.107929
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know