A robust time delay estimation method for ultrasonic echo signals and elastography
Computers in Biology and Medicine, ISSN: 0010-4825, Vol: 136, Page: 104653
2021
- 4Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- CrossRef1
- Captures16
- Readers16
- 16
Article Description
Modern medicine cannot ignore the significance of elastography in diagnosis and treatment plans. Despite improvements in accuracy and spatial resolution of elastograms, robustness against noise remains a neglected attribute. A method that can perform in a satisfactory manner under noisy conditions may prove useful for various elastography methods. Here, we propose a method based on eigenvalue decomposition (EVD). In this method, the estimated time delay is defined as the index of the maximum element in the eigenvector that corresponds to the minimum eigenvalue in the covariance matrix of the received signal. Moreover, the implementation of the least-squares (LS) solution and the lower-upper (LU) decomposition contributes to improving the speed of computation and the accuracy of the estimation under low signal-to-noise ratio (SNR) conditions. To assess the performance of the proposed algorithm, it is evaluated along with generalized cross-correlation (GCC) and EVD. The simulation results clearly confirm that the jitter variance achieved in the proposed algorithm outperforms GCC and EVD in the proximity of the Cramer-Rau lower band. Moreover, our algorithm provides satisfactory performance in terms of variance and bias against sub-sample delay at low SNRS. According to the experimental results, the calculated values of the elastographic signal-to-noise ratio (SNRe) and the elastographic contrast-to-noise ratio (CNRe) of the proposed algorithm were 16.7 and 20.09, respectively, clearly better than the values of the other two methods. Furthermore, the proposed algorithm offers less execution time (about 30% of GCC), with a computational complexity equal to GCC and better than EVD.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0010482521004479; http://dx.doi.org/10.1016/j.compbiomed.2021.104653; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111831147&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34304091; https://linkinghub.elsevier.com/retrieve/pii/S0010482521004479; https://dx.doi.org/10.1016/j.compbiomed.2021.104653
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know