Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach
Computers in Biology and Medicine, ISSN: 0010-4825, Vol: 163, Page: 107124
2023
- 22Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations22
- Citation Indexes22
- 22
- Captures23
- Readers23
- 23
Article Description
Continuous online prediction of human joints angles is a key point to improve the performance of man-machine cooperative control. In this study, a framework of online prediction method of joints angles by long short-term memory (LSTM) neural network only based on surface electromyography (sEMG) signals was proposed. The sEMG signals from eight muscles of five subjects’ right leg and three joints angles and plantar pressure signals of subjects were collected simultaneously. Different inputs (only sEMG (unimodal), sEMG combined with plantar pressure (multimodal)) after online feature extraction and standardization were used for training the angle online prediction model by LSTM. The results indicate that there is no significant difference between the two kinds of inputs for LSTM model and the proposed method can make up for the shortage of using a single type of sensor. The range of mean values of root square mean error, mean absolute error and Pearson correlation coefficient of the three joints angles achieved by the proposed model only with the input of sEMG under four kinds of predicted time (50, 100, 150, and 200 ms) are [1.63°,3.20°],[1.27°, 2.36°] and [0.9747, 0.9935]. Three popular machine learning algorithms with different inputs were compared to the proposed model only based on sEMG. Experiment results demonstrate that the proposed method has the best prediction performance and there are highly significant differences between it and other methods. The difference of prediction results under different gait phases by the proposed method was also analyzed. The results indicate that the prediction effect of support phases is generally better than that of swing phases. Above experimental results show that the proposed method can realize accurate online joint angle prediction and has better performance to promote man-machine cooperation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0010482523005899; http://dx.doi.org/10.1016/j.compbiomed.2023.107124; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161332501&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37315381; https://linkinghub.elsevier.com/retrieve/pii/S0010482523005899; https://dx.doi.org/10.1016/j.compbiomed.2023.107124
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know