Enhancing local representation learning through global–local integration with functional connectivity for EEG-based emotion recognition
Computers in Biology and Medicine, ISSN: 0010-4825, Vol: 179, Page: 108857
2024
- 3Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Emotion recognition based on electroencephalogram (EEG) signals is crucial in understanding human affective states. Current research has limitations in extracting local features. The representation capabilities of local features are limited, making it difficult to comprehensively capture emotional information. In this study, a novel approach is proposed to enhance local representation learning through global–local integration with functional connectivity for EEG-based emotion recognition. By leveraging the functional connectivity of brain regions, EEG signals are divided into global embeddings that represent comprehensive brain connectivity patterns throughout the entire process and local embeddings that reflect dynamic interactions within specific brain functional networks at particular moments. Firstly, a convolutional feature extraction branch based on the residual network is designed to extract local features from the global embedding. To further improve the representation ability and accuracy of local features, a multidimensional collaborative attention (MCA) module is introduced. Secondly, the local features and patch embedded local embeddings are integrated into the feature coupling module (FCM), which utilizes hierarchical connections and enhanced cross-attention to couple region-level features, thereby enhancing local representation learning. Experimental results on three public datasets show that compared with other methods, this method improves accuracy by 4.92% on the DEAP, by 1.11% on the SEED, and by 7.76% on the SEED-IV, demonstrating its superior performance in emotion recognition tasks.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0010482524009429; http://dx.doi.org/10.1016/j.compbiomed.2024.108857; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85198608558&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39018882; https://linkinghub.elsevier.com/retrieve/pii/S0010482524009429
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know