PlumX Metrics
Embed PlumX Metrics

Pseudo-transient models for multiscale, multiresolution simulation and optimization of intensified reaction/separation/recycle processes: Framework and a dimethyl ether production case study

Computers & Chemical Engineering, ISSN: 0098-1354, Vol: 105, Page: 161-172
2017
  • 33
    Citations
  • 0
    Usage
  • 49
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    33
    • Citation Indexes
      33
  • Captures
    49

Article Description

Including detailed models of processing equipment in the process flowsheet model is required in the case of “non-standard” unit operations, including, e.g., intensified equipment and unconventional reactor designs. We provide a unified multiscale framework for including such models in equation-oriented process flowsheet modeling, simulation and optimization. Relying on the reaction/separation/recycle process prototype, we propose a multiresolution paradigm, whereby detailed, distributed-parameter representations of reacting systems and rigorous models of (intensified) separation units are embedded in process flowsheet models. We develop an equation-oriented modeling approach based on a pseudo-transient reformulation of the balance equations, enabling the reliable and robust simulation of the process flowsheet. We also describe a companion design optimization routine. We illustrate these concepts with an extensive case study on dimethyl ether production using an intensified process featuring a dividing-wall distillation column and an adiabatic packed bed reactor with intermediate quenching.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know