Recent trends on hybrid modeling for Industry 4.0
Computers & Chemical Engineering, ISSN: 0098-1354, Vol: 151, Page: 107365
2021
- 160Citations
- 331Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The chemical processing industry has relied on modeling techniques for process monitoring, control, diagnosis, optimization, and design, especially since the third industrial revolution and the emergence of Process Systems Engineering. The fourth industrial revolution, connected to massive digitization, made it possible to collect and process large volumes of data triggering the development of data-driven frameworks for knowledge extraction. However, one must not leave behind the successful solutions developed over decades based on first principle mechanistic modeling approaches. At present, both industry and researchers are realizing the need for new ways to incorporate process and phenomenological knowledge in big data and machine learning frameworks, leading to more robust and intelligible artificial intelligence solutions, capable of assisting the target stakeholders in their activities and decision processes. In this article, we review hybrid modeling techniques, associated system identification methodologies and model assessment criteria. Applications in chemical and biochemical processes are also referred.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0098135421001435; http://dx.doi.org/10.1016/j.compchemeng.2021.107365; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85106415920&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0098135421001435; https://dx.doi.org/10.1016/j.compchemeng.2021.107365
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know