An intelligent system for automatic fingerprint identification using feature fusion by Gabor filter and deep learning
Computers and Electrical Engineering, ISSN: 0045-7906, Vol: 95, Page: 107387
2021
- 44Citations
- 97Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper introduces an intelligent computational approach to automatically authenticate fingerprint for personal identification and verification. The feature vector is formed using combined features obtained from Gabor filtering technique and deep learning technique such as Convolutional Neural Network (CNN). Principle Component Analysis (PCA) has been performed on the feature vectors to reduce the overfitting problems in order to make the classification results more accurate and reliable. A multiclass classifier has been trained using the extracted features. Experiments performed using standard public databases demonstrated that the proposed approach showed better performance with regard to accuracy (99.87%) compared to the more recent classification techniques such as Support Vector Machine (97.86%) or Random Forest (95.47%). However, the proposed method also showed higher accuracy compared to other validation approaches such as K-fold (98.89%) and generalization (97.75%). Furthermore, these results were supported by confusion matrix results where only 10 failures were found when tested with 5000 images.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045790621003554; http://dx.doi.org/10.1016/j.compeleceng.2021.107387; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113534933&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0045790621003554; https://dx.doi.org/10.1016/j.compeleceng.2021.107387
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know