SPNet: A deep network for broadcast sports video highlight generation
Computers and Electrical Engineering, ISSN: 0045-7906, Vol: 99, Page: 107779
2022
- 9Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Professionally broadcasted sports videos usually have long durations but contain only a few exciting events. In general, professional bodies and amateur content creators spend thousands of man-hours to manually crop the exciting video segments from these long-duration videos and generate handcrafted highlights. Sports enthusiasts keep them updated with the latest happening based on such highlights. There exists a need for a method that accurately and automatically recognizes the exciting activities in a sports game. To address this issue, we present a deep learning-based network SPNet that recognizes exciting sports activities by exploiting high-level visual feature sequences and automatically generates highlights. The proposed SPNet utilizes the strength of 3D convolution networks and Inception blocks for accurate activity recognition. We divide the sports video excitement into views, actions, and situations. Moreover, we provide 156 new annotations for about twenty-three thousand videos of the SP-2 dataset. Extensive experiments are conducted using two datasets SP-2 and C-sports, and the results demonstrate the superiority of the proposed SPNet. Our proposed method achieves the highest performance for views, action, and situation activities with an average accuracy of 76% on the SP-2 dataset and 82% on the C-sports dataset.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045790622000817; http://dx.doi.org/10.1016/j.compeleceng.2022.107779; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85124583708&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0045790622000817; https://dx.doi.org/10.1016/j.compeleceng.2022.107779
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know