Parkinson and essential tremor classification to identify the patient’s risk based on tremor severity
Computers and Electrical Engineering, ISSN: 0045-7906, Vol: 101, Page: 107946
2022
- 20Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Parkinson’s disease (PSD) and essential tremor (ET) are oscillatory and rhythmic movements in the human body with similar characteristics and becomes challenging to identify it accurately. Thus, the chances of misdiagnosis are high. Researchers employed machine learning (ML) algorithms to accurately classify ET and PSD patients. This requires manual feature extraction that, without knowing their importance in prediction purposes, can be mitigated with automated feature engineering using deep learning (DL). So, in this paper, we propose a convolutional neural network (CNN)-based classification model with seven hidden layers and different filter sizes for the accurate classification of PSD and healthy control (HC) subjects. A flatten layer converts three-dimensional data to one-dimensional Tensor flow. Finally, the dense layer outputs the classification of PSD and HC patients based on tremor intensity to identify the PSD patient’s risk at an early stage. It outperforms the traditional models with 92.4% accuracy of tremor classification.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045790622002245; http://dx.doi.org/10.1016/j.compeleceng.2022.107946; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129232986&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0045790622002245; https://dx.doi.org/10.1016/j.compeleceng.2022.107946
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know