Comprehensive urban space representation with varying numbers of street-level images
Computers, Environment and Urban Systems, ISSN: 0198-9715, Vol: 106, Page: 102043
2023
- 15Citations
- 25Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Street-level imagery has emerged as a valuable tool for observing large-scale urban spaces with unprecedented detail. However, previous studies have been limited to analyzing individual street-level images. This approach falls short in representing the characteristics of a spatial unit, such as a street or grid, which may contain varying numbers of street-level images ranging from several to hundreds. As a result, a more comprehensive and representative approach is required to capture the complexity and diversity of urban environments at different spatial scales. To address this issue, this study proposes a deep learning-based module called Vision-LSTM, which can effectively obtain vector representation from varying numbers of street-level images in spatial units. The effectiveness of the module is validated through experiments to recognize urban villages, achieving reliable recognition results (overall accuracy: 91.6%) through multimodal learning that combines street-level imagery with remote sensing imagery and social sensing data. Compared to existing image fusion methods, Vision-LSTM demonstrates significant effectiveness in capturing associations between street-level images. The proposed module can provide a more comprehensive understanding of urban spaces, enhancing the research value of street-level imagery and facilitating multimodal learning-based urban research. Our models are available at https://github.com/yingjinghuang/Vision-LSTM.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0198971523001060; http://dx.doi.org/10.1016/j.compenvurbsys.2023.102043; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85173575929&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0198971523001060; https://dx.doi.org/10.1016/j.compenvurbsys.2023.102043
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know