Acceleration of complex high-performance computing ensemble simulations with super-resolution-based subfilter models
Computers & Fluids, ISSN: 0045-7930, Vol: 271, Page: 106150
2024
- 3Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Direct numerical simulation (DNS) of fluid flow problems has been one of the most important applications of high-performance computing (HPC) in the last decades. For example, turbulent flows require the simultaneous resolution of multiple spatial and temporal scales as all scales are coupled, resulting in very large simulations with enormous degrees of freedom. Another example is reactive flows, which typically result in a large system of coupled differential equations and multiple transport equations that must be solved simultaneously. In addition, many flows exhibit chaotic behavior, meaning that only statistical ensembles of results can be compared, further increasing the computational time. In this work, a combined HPC/deep learning (DL) workflow is presented that drastically reduces the overall computational time required while still providing acceptable accuracy. Traditionally, all the simulations required to compute ensemble statistics are performed using expensive DNS. The idea behind the combined HPC/DL workflow is to reduce the number of expensive DNSs by developing a DL-assisted large-eddy simulation (LES) approach that uses a sophisticated DL network, called PIESRGAN, as a subfilter model for all unclosed terms and is accurate enough to substitute DNSs. The remaining DNSs are thus used in two ways: first, as data contributing to the ensemble statistics, and second, as data used to train the DL network. It was found that in many cases two remaining DNSs are sufficient for training the LES approach. The cost of the DL-supported LES is usually more than one order of magnitude cheaper than the DNS, which drastically speeds up the workflow, even considering the overhead for training the DL network.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045793023003754; http://dx.doi.org/10.1016/j.compfluid.2023.106150; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85183466922&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0045793023003754; https://dx.doi.org/10.1016/j.compfluid.2023.106150
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know