Detecting cyberattacks using anomaly detection in industrial control systems: A Federated Learning approach
Computers in Industry, ISSN: 0166-3615, Vol: 132, Page: 103509
2021
- 123Citations
- 100Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Effective Anomaly Detection Pipeline for Amazon Reviews: References & Appendix
:::info Author: (1) David Novoa-Paradela, Universidade da Coruña, CITIC, Campus de Elviña s/n, 15008, A Coruña, Spain & Corresponding author (Email: david.novoa@udc.es); (2) Oscar Fontenla-Romero,
Article Description
In recent years, the rapid development and wide application of advanced technologies have profoundly impacted industrial manufacturing, leading to smart manufacturing (SM). However, the Industrial IoT (IIoT)-based manufacturing systems are now one of the top industries targeted by a variety of attacks. In this research, we propose detecting Cyberattacks in Industrial Control Systems using Anomaly Detection. An anomaly detection architecture for the IIoT-based SM is proposed to deploy one of the top most concerned networking technique - a Federated Learning architecture - that can detect anomalies for time series data typically running inside an industrial system. The architecture achieves higher detection performance compared to the current detection solution for time series data. It also shows the feasibility and efficiency to be deployed on top of edge computing hardware of an IIoT-based SM that can save 35% of bandwidth consumed in the transmission link between the edge and the cloud. At the expense, the architecture needs to trade off with the computing resource consumed at edge devices for implementing the detection task. However, findings in maximal CPU usage of 85% and average Memory usage of 37% make this architecture totally realizable in an IIoT-based SM.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0166361521001160; http://dx.doi.org/10.1016/j.compind.2021.103509; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85110479052&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0166361521001160; https://dx.doi.org/10.1016/j.compind.2021.103509
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know