Statistical shape model reconstruction with sparse anomalous deformations: Application to intervertebral disc herniation
Computerized Medical Imaging and Graphics, ISSN: 0895-6111, Vol: 46, Page: 11-19
2015
- 5Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef4
- Captures32
- Readers32
- 32
Article Description
Many medical image processing techniques rely on accurate shape modeling of anatomical features. The presence of shape abnormalities challenges traditional processing algorithms based on strong morphological priors. In this work, a sparse shape reconstruction from a statistical shape model is presented. It combines the advantages of traditional statistical shape models (defining a ‘normal’ shape space) and previously presented sparse shape composition (providing localized descriptors of anomalies). The algorithm was incorporated into our image segmentation and classification software. Evaluation was performed on simulated and clinical MRI data from 22 sciatica patients with intervertebral disc herniation, containing 35 herniated and 97 normal discs. Moderate to high correlation ( R = 0.73) was achieved between simulated and detected herniations. The sparse reconstruction provided novel quantitative features describing the herniation morphology and MRI signal appearance in three dimensions (3D). The proposed descriptors of local disc morphology resulted to the 3D segmentation accuracy of 1.07 ± 1.00 mm (mean absolute vertex-to-vertex mesh distance over the posterior disc region), and improved the intervertebral disc classification from 0.888 to 0.931 (area under receiver operating curve). The results show that the sparse shape reconstruction may improve computer-aided diagnosis of pathological conditions presenting local morphological alterations, as seen in intervertebral disc herniation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0895611115000877; http://dx.doi.org/10.1016/j.compmedimag.2015.05.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84930439114&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/26060085; https://linkinghub.elsevier.com/retrieve/pii/S0895611115000877; https://dx.doi.org/10.1016/j.compmedimag.2015.05.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know