A deep registration method for accurate quantification of joint space narrowing progression in rheumatoid arthritis
Computerized Medical Imaging and Graphics, ISSN: 0895-6111, Vol: 108, Page: 102273
2023
- 2Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- Captures26
- Readers26
- 26
Article Description
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that leads to progressive articular destruction and severe disability. Joint space narrowing (JSN) has been regarded as an important indicator for RA progression and has received significant attention. Radiology plays a crucial role in the diagnosis and monitoring of RA through the assessment of joint space. A new framework for monitoring joint space by quantifying joint space narrowing (JSN) progression through image registration in radiographic images has emerged as a promising research direction. This framework offers the advantage of high accuracy; however, challenges still exist in reducing mismatches and improving reliability. In this work, we utilize a deep intra-subject rigid registration network to automatically quantify JSN progression in the early stages of RA. In our experiments, the mean-square error of the Euclidean distance between the moving and fixed images was 0.0031, the standard deviation was 0.0661 mm and the mismatching rate was 0.48%. Our method achieves sub-pixel level accuracy, surpassing manual measurements significantly. The proposed method is robust to noise, rotation and scaling of joints. Moreover, it provides misalignment visualization, which can assist radiologists and rheumatologists in assessing the reliability of quantification, exhibiting potential for future clinical applications. As a result, we are optimistic that our proposed method will make a significant contribution to the automatic quantification of JSN progression in RA. Code is available at https://github.com/pokeblow/Deep-Registration-QJSN-Finger.git.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0895611123000915; http://dx.doi.org/10.1016/j.compmedimag.2023.102273; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85166291700&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37531811; https://linkinghub.elsevier.com/retrieve/pii/S0895611123000915; https://dx.doi.org/10.1016/j.compmedimag.2023.102273
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know