Tailoring adherend surfaces for enhanced bonding in CF/PEKK composites: Comparative analysis of atmospheric plasma activation and conventional treatments
Composites Part A: Applied Science and Manufacturing, ISSN: 1359-835X, Vol: 180, Page: 108101
2024
- 22Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Here, we propose the utilization of atmospheric plasma activation (APA), which outperforms peel-ply (PP) treatment and mechanical abrasion (MA) in achieving high-performance adhesively bonded carbon fiber/polyetherketoneketone (CF/PEKK) composites. This study covers several key aspects, including the chemical and morphological characterization of treated surfaces and mechanical performance assessments of single lap-joints (SLJs) under tensile and flexural loading conditions. In addition, in-situ acoustic emission (AE) monitoring is employed during tensile tests to determine dominant damage types and failure modes in the SLJs. Surface analysis shows that MA increases roughness, PP treatment decreases wettability, while APA enhances wettability by modifying the surface chemistry. Tensile and flexural tests reveal that APA-treated joints surpassed non-treated (NT) ones, with up to 5- and 7-times higher load-carrying performance, respectively, while fracture analysis suggests a shift from adhesive to cohesive failure. AE results show that increased AE events related to cohesive failure align with improved interface interactions.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1359835X24000988; http://dx.doi.org/10.1016/j.compositesa.2024.108101; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85186682162&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1359835X24000988; https://dx.doi.org/10.1016/j.compositesa.2024.108101
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know