PlumX Metrics
Embed PlumX Metrics

Multiscale modelling of CFRP composites exposed to thermo-mechanical loading from fire

Composites Part A: Applied Science and Manufacturing, ISSN: 1359-835X, Vol: 187, Page: 108481
2024
  • 0
    Citations
  • 0
    Usage
  • 7
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Carbon fibre reinforced polymers (CFRP) are prone to structural damage during extreme events such as fire. Typically, modelling the effect of fire on CFRP structures is carried out through mesoscale analysis to predict overall structural performance. In this study, Finite Element (FE) modelling has been conducted to investigate the effects of fire on CFRP specimens at both meso- and micro-scales. The mesoscale analysis informs the microscale analysis to examine the effects of fire on each constituent of the material. A comparison of thermal analysis at the meso- and micro-scales reveals less than a 6% difference in the predicted nodal temperature. For the first time, fire-induced progressive failure analysis has been conducted on the fibres, matrix, and fibre/matrix interface of representative plies within the composite laminates. Fibre breakage, matrix cracking, and interface debonding were accurately captured using representative volume element (RVE) models under thermo-mechanical loading, showing qualitatively excellent agreement with experimental data.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know