PlumX Metrics
Embed PlumX Metrics

Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/vertical edge-rich graphene/epoxy nanocomposites with remarkable thermal management performance

Composites Science and Technology, ISSN: 0266-3538, Vol: 222, Page: 109407
2022
  • 58
    Citations
  • 0
    Usage
  • 13
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    58
    • Citation Indexes
      58
  • Captures
    13

Article Description

Owing to the growing electromagnetic interference (EMI) shielding and heat removal issues in modern electronics, polymer composites with remarkable EMI shielding performance and thermal management capability have attached much attention. In this work, vertical edge-rich graphene (ERG) were in-situ grown on the reduced graphene oxide (rGO) aerogel skeleton, constructing a unique 3D hybridized carbon nanostructures with covalent bonding, which were applied to modify epoxy resin for EMI shielding and thermal management. Impressively, the obtained rGO-ERG/epoxy nanocomposites possessed an improved EMI shielding performance of 45.9 dB in the X-band, which mainly attributes to the structural defects and strong charge polarization ability of ERG. Furthermore, theoretical models qualitatively prove that the construction of phonon-matching 3D rGO-ERG networks results in efficient phonon transport, providing an enhanced thermal conductivity of 1.96 W m −1  K −1. Meanwhile, the 3D hybrid structure from total 2D ingredients which exhibits a remarkable thermal management capability is further corroborated. More importantly, this strategy endows rGO-ERG/epoxy nanocomposites comprehensive functions, providing a bright application prospect for next-generation electronic packing.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know