Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/vertical edge-rich graphene/epoxy nanocomposites with remarkable thermal management performance
Composites Science and Technology, ISSN: 0266-3538, Vol: 222, Page: 109407
2022
- 58Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Owing to the growing electromagnetic interference (EMI) shielding and heat removal issues in modern electronics, polymer composites with remarkable EMI shielding performance and thermal management capability have attached much attention. In this work, vertical edge-rich graphene (ERG) were in-situ grown on the reduced graphene oxide (rGO) aerogel skeleton, constructing a unique 3D hybridized carbon nanostructures with covalent bonding, which were applied to modify epoxy resin for EMI shielding and thermal management. Impressively, the obtained rGO-ERG/epoxy nanocomposites possessed an improved EMI shielding performance of 45.9 dB in the X-band, which mainly attributes to the structural defects and strong charge polarization ability of ERG. Furthermore, theoretical models qualitatively prove that the construction of phonon-matching 3D rGO-ERG networks results in efficient phonon transport, providing an enhanced thermal conductivity of 1.96 W m −1 K −1. Meanwhile, the 3D hybrid structure from total 2D ingredients which exhibits a remarkable thermal management capability is further corroborated. More importantly, this strategy endows rGO-ERG/epoxy nanocomposites comprehensive functions, providing a bright application prospect for next-generation electronic packing.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S026635382200149X; http://dx.doi.org/10.1016/j.compscitech.2022.109407; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85126942314&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S026635382200149X; https://dx.doi.org/10.1016/j.compscitech.2022.109407
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know