A reliable progressive fatigue damage model for life prediction of composite laminates incorporating an adaptive cyclic jump algorithm
Composites Science and Technology, ISSN: 0266-3538, Vol: 227, Page: 109587
2022
- 14Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, a reliable progressive fatigue damage model (PFDM) for predicting the fatigue life of composite laminates is proposed by combining the normalized fatigue life model, nonlinear residual degradation models and fatigue-improved Puck criterion. To balance the accuracy of life predictions and computational efficiency, an adaptive cyclic jump algorithm is developed and implemented within the PFDM. The sensitivity of life prediction to cyclic jump parameter has been greatly reduced by correlating the cyclic jump with the increment time and viscous coefficient. Therefore, the cyclic jump parameter can be arbitrarily selected within a relatively large range to obtain convergent results. When incorporating the adaptive cyclic jump algorithm, there is no need to define a standard for determining the material failure in numerical calculations, which effectively eliminates an artificially induced uncertainty in life predictions. Two sets of experiments are conducted to validate the proposed PFDM. The numerical predictions including static failure strength and fatigue life correlate reasonably well with the available experimental data.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0266353822003293; http://dx.doi.org/10.1016/j.compscitech.2022.109587; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85132384501&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0266353822003293; https://dx.doi.org/10.1016/j.compscitech.2022.109587
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know