Flexible multifunctional magnetic-conductive Janus nanocomposite films towards highly-efficient electromagnetic interference shielding and thermal management
Composites Science and Technology, ISSN: 0266-3538, Vol: 256, Page: 110756
2024
- 17Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The rapid development of aerospace, intelligent wearable electronics and 5G communications puts forward higher demands for electromagnetic interference (EMI) shielding materials. Herein, the flexible multifunctional magnetic-conductive Janus nanocomposite films with magnetic cobalt carbide nanowires/bacterial cellulose (Co@C NW/BC) blends as the upper side, and conductive Ti3C2Tx MXene as the bottom side are obtained via the layer-by-layer (LBL) vacuum assisted filtration-hot pressing method. The two magnetic and conductive sides endow the Janus nanocomposite films with distinctly different performances in EMI shielding and thermal management. When the electromagnetic waves are incident from Co@C NW/BC side, the films exhibit a high EMI shielding effectiveness (EMI SE) of 49.8 dB with an enhanced microwave absorption (SEA) of 33.9 dB at the ultralow thickness of 43 μm. Meanwhile, the Ti3C2Tx side exhibits improved electrical heating performances with a surface temperature of 120 °C at 6 V voltage, increased photothermal conversion temperature of 77.8 °C upon 2.0 kW/m2 light intensity, as well as excellent thermal stealth properties with a low radiation temperature of 88.4 °C on the 240 °C hot stage. Moreover, the Janus nanocomposite films show a high tensile strength of 80.0 MPa. The resultant Janus nanocomposite films possess great application prospects in highly-efficient EMI shielding and thermal management.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0266353824003269; http://dx.doi.org/10.1016/j.compscitech.2024.110756; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85198343753&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0266353824003269; https://dx.doi.org/10.1016/j.compscitech.2024.110756
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know