Nacre-inspired topological design tuning the impact resistant behaviors of composite plates
Composite Structures, ISSN: 0263-8223, Vol: 299, Page: 116077
2022
- 13Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Nacre is well known for its high strength and toughness owing to its ingenious “brick-and-mortar” microstructure. However, its impact resistance has not been studied as well as its static properties, even though protecting fragile organs from external dynamic loadings is one of its most important functions. The current work systematically studied the impact resistant behaviors and energy absorption mechanisms of nacre-inspired composite plates with the “brick-and-mortar” organization of three typical “brick” reinforcements seen in nacre, namely, flat, dovetail and inverse-dovetail. Through the finite element method simulations, the impact stiffness, energy absorption capacity and primary working mechanisms of the composite plates during impact were analyzed. The results show that the inverse-dovetail microstructure is superior in impact stiffness in the projectile rebounding situation, while the dovetail microstructure is better for its relatively higher energy absorption capacity in both the rebounding and perforation scenarios. In the rebounding scenario the primary energy consuming mechanism is plastic deformation, whereas it converts to spalling and fragmentation in the perforation situation. The tablet aspect ratio plays a significant role in tuning the composites’ impact resistant performance and working mechanisms. These findings and conclusions provide meaningful insights into the design of bioinspired composites with high impact resistance.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0263822322008182; http://dx.doi.org/10.1016/j.compstruct.2022.116077; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135938703&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0263822322008182; https://dx.doi.org/10.1016/j.compstruct.2022.116077
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know