Rapid evaluation and prediction of cure-induced residual stress of composites based on cGAN deep learning model
Composite Structures, ISSN: 0263-8223, Vol: 330, Page: 117827
2024
- 2Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this piece of present work, we propose a deep learning model driven by conditional generative adversarial network (cGAN) for rapid evaluation and prediction of cure-induced residual stress (CRS) of composites. The CRS is evaluated by solving for the material behaviors of the cure kinetics, viscoelasticity, thermal expansion, and cure shrinkage under heat transfer condition using finite element (FE) method. The geometry and CRS fields are extracted from numerous simulations and subsequently utilized in the proposed cGAN training process. With this end-to-end unsupervised learning, the cGAN model can predict the CRS with high fidelity based on the fiber random distributed microstructure and capture the variation of fiber volume fraction. In qualitative measures, peak signal to noise ratio (PSNR) and structure similarity index (SSIM) are employed for accuracy verification. Moreover, the cGAN model can also significantly reduce the computational cost and provide some insights for optimizing the manufacturing process of composites.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S026382232301173X; http://dx.doi.org/10.1016/j.compstruct.2023.117827; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85180986761&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S026382232301173X; https://dx.doi.org/10.1016/j.compstruct.2023.117827
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know