A novel Bayesian inference method for predicting optimum strength gain in sustainable geomaterials for greener construction
Construction and Building Materials, ISSN: 0950-0618, Vol: 344, Page: 128255
2022
- 19Citations
- 62Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
There has been growing research interests in the study of sustainable geomaterials to reduce or replace the use of cement to promote greener construction. A machine learning technique based on Bayesian inference was proposed in this study to predict the optimum strength gain in sustainable geomaterials as an alternative to preliminary investigation of new materials and to supplement existing experimental design process. The proposed novel methodology was implemented using two established case studies on sustainable geomaterials previously studied by the second author: (i) fly ash-based geopolymer concrete and (ii) sustainable cementitious blends for soft soil stabilization in order to validate the proposed Bayesian methodology for wider application considering efficiency and sustainability as opposed to performing excessive conventional laboratory-based destructive tests. The eventual results show that the proposed Bayesian approach, which implements the 3-stage data training, validating, and updating process could reliably and accurately predict the strength of geomaterials, despite them having very different mix design requirements.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0950061822019183; http://dx.doi.org/10.1016/j.conbuildmat.2022.128255; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85133298632&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0950061822019183; https://dx.doi.org/10.1016/j.conbuildmat.2022.128255
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know