Locking organic solvents by crystallization-induced polymer network
Construction and Building Materials, ISSN: 0950-0618, Vol: 451, Page: 138844
2024
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- News1
Most Recent News
Data on Building and Construction Reported by Researchers at Northwestern Polytechnic University (Locking Organic Solvents By Crystallization-induced Polymer Network)
2024 NOV 22 (NewsRx) -- By a News Reporter-Staff News Editor at Daily Real Estate News -- Investigators publish new report on Building and Construction.
Article Description
Organogels that lock organic solvents within a polymer network shows promising applications in ice-phobicity, anti-biofouling, conserving cultural heritage etc. However, the synthesis of organogels by versatile and cost-effective methods still remain challenging. Here, we introduce a novel and economical approach to organogel preparation via crystallization-induced polymer precipitation, which involves the straightforward blending of carbonyl contained polymer, nano Ca(OH) 2, and excess ethyl acetate (EA). During the formation, nano Ca(OH) 2 reacts with EA to produce ethanol and calcium acetate, in which Ca 2+ ionically bonds with carbonyl of polymer. Due to the low solubility in EA and ethanol, calcium acetate initiates crystallization. The interaction between Ca(CH 3 COO) 2 and polymer induces the separation of polymer from the solvent, thereby forming a network that locks the surplus EA and ethanol. More importantly, the organogel is capable not only of encapsulating 12 organic solvents within its precursor but also of effectively removing various aged polymeric coatings from wall paintings without leaving residues. This innovative organogel system marks a significant forward in the realm of organogel with applications in conservation and surface engineering.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know