Design and in situ biosynthesis of precision therapies against gastrointestinal pathogens
Current Opinion in Physiology, ISSN: 2468-8673, Vol: 23, Page: 100453
2021
- 4Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Gastrointestinal pathogens employ a variety of mechanisms to damage host tissue, acquire nutrients, and evade treatment. To supplement broad-spectrum antimicrobials, there has been increasing interest in designing molecules that target specific taxa and virulence processes. Excitingly, these antivirulence therapies may be able to be synthesized by gut-resident microbes, thereby enabling delivery of these drugs directly to the spatial and temporal site of infection. In this review, we highlight recent progress in our understanding of small molecules that inhibit specific virulence mechanisms. We additionally discuss emerging methods to discover pathogen-specific and mechanism-specific peptides and small proteins. Finally, we cover recent demonstrations of probiotics engineered to produce antimicrobials in response to pathogen-specific cues in the gut. Collectively, these advances point to an emerging integrative approach to treatment of gastrointestinal diseases, comprising microbiologists, peptide chemists, and synthetic biologists.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S246886732100078X; http://dx.doi.org/10.1016/j.cophys.2021.06.007; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111016239&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S246886732100078X; https://dx.doi.org/10.1016/j.cophys.2021.06.007
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know