A weighted-sum method for solving the bi-objective traveling thief problem
Computers & Operations Research, ISSN: 0305-0548, Vol: 138, Page: 105560
2022
- 22Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0305054821002926; http://dx.doi.org/10.1016/j.cor.2021.105560; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85115994866&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0305054821002926; https://dx.doi.org/10.1016/j.cor.2021.105560
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know