Effect of alternating voltage treatment on the corrosion resistance of pure magnesium
Corrosion Science, ISSN: 0010-938X, Vol: 51, Issue: 8, Page: 1772-1779
2009
- 49Citations
- 51Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Pure magnesium was treated by alternating voltage (AV) treatment technique. The optimal AV-treatment parameters for greatly improving corrosion resistance were determined by the orthogonal experiments. Polarization curves, electrochemical impedance spectroscopy (EIS), and scanning electrochemical microscopy (SECM) were performed to understand the effect of AV-treatment on the corrosion resistance of pure magnesium. AFM, contact angle measurement and XPS were employed to further investigate the influence of AV-treatment on the properties of the surface film formed on pure magnesium after AV-treatment. The results showed that a uniform and stable film was formed and the corrosion resistance of pure magnesium was greatly improved after AV-treatment. This was caused by the noticeable change of chemical structure and semi conducting properties of surface film after AV-treatment.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0010938X09001802; http://dx.doi.org/10.1016/j.corsci.2009.05.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=67649819352&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0010938X09001802; https://dx.doi.org/10.1016/j.corsci.2009.05.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know