Ionic activity in concentrated electrolytes: Solvent structure effect revisited
Chemical Physics Letters, ISSN: 0009-2614, Vol: 738, Page: 136915
2020
- 20Citations
- 35Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We revisit the role of the local solvent structure on the activity coefficients of electrolytes within a nonlocal dielectric function approach. We treat the concentrated electrolyte as a dielectric medium and suggest an interpolation formula for its nonlocal dielectric response. The water dielectric response is approximated based on MD simulations and experimental data, that gives strong over-screening and oscillations in the potential, which are absent in the standard “primitive model” predictions. We obtain mathematically tractable closed-form expressions for the activity coefficients, in reasonable agreement with experimental data.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0009261419308966; http://dx.doi.org/10.1016/j.cplett.2019.136915; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85076053228&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0009261419308966; https://dx.doi.org/10.1016/j.cplett.2019.136915
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know