Effect of inhibiting PDHα1 gene expression on the metabolism of fatty liver cells
Current Research in Biotechnology, ISSN: 2590-2628, Vol: 7, Page: 100174
2024
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
PDHα1 gene encodes catalytic subunit PDHE1α of pyruvate dehydrogenase (PDH) complex. Based on previous studies, it is hypothesized that inhibition of PDH activity prevents the entry of glycolytic pyruvate into TCA cycle, while promotes fatty acid oxidation and reduces liver triglyceride (TG) level, thereby alleviating nonalcoholic fatty liver disease (NAFLD). In this study, an in vitro model for NAFLD was established with medical fat emulsion; the most effective siRNA for PDHα1 gene was screened out by qPCR technology; the alterations in metabolism of glucose and lipid, and structure & function of mitochondria in the NAFLD cells were primarily evaluated after transfecting PDHα1 siRNA. As the results showed, after inhibiting the expression of PDHα1 gene, glucose level in culture medium was time-dependently increased, and LDH activity in the cells was moderately elevated after 24 h of transfection and then returned to the normal level after 48 h; intracellular TG level was decreased while LPS activity was increased in a time-dependent manner; no significant change in mitochondrial structure was observed with or without siRNA transfection, and ATP content was obviously reduced after 24 h of transfection, followed by restoration after 48 h. It can be concluded that inhibiting PDHα1 gene in fatty liver cells enhances lipid degradation, and represses the utilization of glucose to an extent, thus reducing TG level without impacting energy generation required for cell survival.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2590262823000564; http://dx.doi.org/10.1016/j.crbiot.2023.100174; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85181146050&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2590262823000564; https://dx.doi.org/10.1016/j.crbiot.2023.100174
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know