Analytical algorithms for ligand cone angles calculations. Application to triphenylphosphine palladium complexes
Comptes Rendus Chimie, ISSN: 1631-0748, Vol: 18, Issue: 6, Page: 678-684
2015
- 2Citations
- 11Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We defined the smallest enclosing cone angle as the Tolman cone angle for null atomic spheres radii. Then we provide a simple analytical algorithm to compute the smallest enclosing cone at fixed apex, which works in the case of unsymmetrical ligand. We applied it to compute ligand cones for a family of triphenylphosphine palladium complexes, and we showed that both the angle of the cone and its resulting solid angle strongly correlate with the Tolman cone angle, thus suggesting that there is no more need for atomic radii. We also defined the best cone of fixed apex fitting a population of unit vectors. We proposed a simple analytical algorithm to compute it, which is proved to work in any d -dimensional Euclidean space. We defined the conicity index κ to evaluate quantitavely the pertinence of the best fitting cone. We used this best fit cone to define a mean ligand cone, and thus a mean cone angle and a mean cone axis. We applied it to our family of triphenylphosphine palladium complexes and we observed that the axis of the individual cones deviated from the mean cone axis by at most 13.2°. The observed conicity index was small κ=0.0177, indicating a very good fit for the whole family of complexes. Nous définissons l’angle du plus petit cône englobant comme étant l’angle conique de Tolman à rayons atomiques nuls. Puis, nous fournissons un algorithme analytique simple de calcul du plus petit cône englobant à apex fixé, qui fonctionne dans le cas des ligands non symétriques. Nous l’appliquons aux cônes de ligands pour une famille de complexes palladium triphenylphosphine et nous montrons qu’à la fois l’angle du cône et l’angle solide qui en résulte sont fortement corrélés avec l’angle conique de Tolman, suggérant ainsi qu’il n’y a plus besoin des rayons atomiques. Nous définissons aussi le meilleur cône moyen d’apex fixé pour une population de vecteurs unitaires. Nous proposons un algorithme analytique simple pour le calculer, que nous prouvons être valide dans tout espace euclidien d -dimensionnel. Nous définissons l’indice de conicité κ pour évaluer quantitativement la pertinence du meilleur cône. Nous utilisons ce meilleur cône pour définir un cône moyen de ligand, et donc un angle moyen de cône et un axe moyen de cône. Nous l’appliquons à notre famille de complexes palladium triphenylphosphine et nous observons que les axes individuels des cônes dévient de l’axe moyen de cône d’au plus 13,2°. L’indice de conicité observé est faible κ=0,0177, indiquant un très bon ajustement à l’ensemble de la famille de complexes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1631074815001125; http://dx.doi.org/10.1016/j.crci.2015.04.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84935005796&origin=inward; https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2015.04.004/; https://dx.doi.org/10.1016/j.crci.2015.04.004
Cellule MathDoc/Centre Mersenne
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know