Characterization of defective coffee beans and blends differentiation based on 1 H qNMR technique
Current Research in Food Science, ISSN: 2665-9271, Vol: 9, Page: 100870
2024
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures11
- Readers11
- 11
Article Description
Defective coffee beans (DCB) are one of the main reasons for poor coffee quality. In the current research, chemical difference of three common DCB including sour beans (SCB), black beans (BCB), and mold beans (MCB) were clarified using 1 H qNMR method and compared with that of non-defective beans (NDCB). The results indicated that DCB has lower sugar and lipid content compared to NDCB, yet it boasts a higher acetate concentration. The 1 H NMR from water-soluble content was shown to be more effective than that of oil fraction for qualitative of DCB blends, regardless of whether partial least squares discriminant analysis (PLS-DA) or machine learning (ML) algorithms were used. Support vector machine (SVM) was proved to be excellent for distinguishing DCB blends. Finally, a partial least squares regression (PLS) model was built for quantitative analysis of DCB blends. In summary, current research will not only help to reveal the material basis of DCB and their impact on coffee flavor, but also provide feasible strategies for the identification of DCB.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2665927124001965; http://dx.doi.org/10.1016/j.crfs.2024.100870; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85205135020&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39403596; https://linkinghub.elsevier.com/retrieve/pii/S2665927124001965
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know