PlumX Metrics
Embed PlumX Metrics

Biodegradable capsules as a sustainable and accessible container for vitrification of gonadal tissue using the zebrafish animal model

Cryobiology, ISSN: 0011-2240, Vol: 116, Page: 104944
2024
  • 1
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Cryopreservation of fish gonadal tissue is an important technique for preserving genetic variability. However, this technique involves the use of cryotubes, plastic containers with low degradability that are expensive and difficult to obtain in certain parts of the world. Therefore, this study aimed to evaluate the efficiency of gelatin and hypromellose hard capsules as a sustainable and accessible alternative container to the cryotube for vitrification of zebrafish ( Danio rerio ) gonadal tissue. The gonadal tissues (testicular or ovarian) were vitrified in cryotubes, hard-gelatin, and hard-hypromellose capsules. Gelatin capsules exhibited comparable efficacy to cryotubes in preserving spermatogonia viability (33.03 ± 10.03 % and 37.96 ± 8.35 %, respectively), whereas hypromellose capsules showed decreased viability (18.38 ± 2.09 %). Immature oocyte viability remained unaffected by the capsule materials, with no difference compared to cryotubes at all oocyte stages (Primary Growth: p < 0.0001; Cortical Alveolar: p < 0.0001; Vitellogenic: p < 0.0001). Mitochondrial activity and lipid peroxidation demonstrated no difference among cryotubes and capsules for both gonadal tissues. However, antioxidant activity was notably higher in gelatin capsules (Testes: 147.2 ± 32.32 μg; Ovary: 87.98 ± 10.91 μg) than in cryotubes (Testes: 81.04 ± 26.05 μg; Ovary: 54.35 ± 11.23 μg) and hypromellose capsules (Testes: 62.36 ± 17.10 μg; Ovary: 63.96 ± 7.51 μg), likely due to the inherent antioxidant properties of gelatin. The results obtained in this study demonstrate that the cryotube can be replaced by gelatin capsules for vitrification of both gonadal tissues of zebrafish, being a sustainable and accessible alternative as it is a low-cost and environmentally friendly container.

Bibliographic Details

de Freitas, Thaiza Rodrigues; Rodrigues, Rômulo Batista; Marques, Lis Santos; Dantas, Renata Villar; Torres-Lozano, Karel Gelina; França, Thales Souza; Lima, Larise Caroline Oliveira; Santos, Francielli Weber; Nicoleti, Eduardo Thomé; Chaves, Tales Fabris; Streit, Danilo Pedro

Elsevier BV

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know