Enhancing Mass spectrometry-based tumor immunopeptide identification: machine learning filter leveraging HLA binding affinity, aliphatic index and retention time deviation
Computational and Structural Biotechnology Journal, ISSN: 2001-0370, Vol: 23, Page: 859-869
2024
- 1Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Accurately identifying neoantigens is crucial for developing effective cancer vaccines and improving tumor immunotherapy. Mass spectrometry-based immunopeptidomics has emerged as a promising approach to identifying human leukocyte antigen (HLA) peptides presented on the surface of cancer cells, but false-positive identifications remain a significant challenge. In this study, liquid chromatography-tandem mass spectrometry-based proteomics and next-generation sequencing were utilized to identify HLA-presenting neoantigenic peptides resulting from non-synonymous single nucleotide variations in tumor tissues from 18 patients with renal cell carcinoma or pancreatic cancer. Machine learning was utilized to evaluate Mascot identifications through the prediction of MS/MS spectral consistency, and four descriptors for each candidate sequence: the max Mascot ion score, predicted HLA binding affinity, aliphatic index and retention time deviation, were selected as important features in filtering out identifications with inadequate fragmentation consistency. This suggests that incorporating rescoring filters based on peptide physicochemical characteristics could enhance the identification rate of MS-based immunopeptidomics compared to the traditional Mascot approach predominantly used for proteomics, indicating the potential for optimizing neoantigen identification pipelines as well as clinical applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2001037024000230; http://dx.doi.org/10.1016/j.csbj.2024.01.023; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85184137188&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38356658; https://linkinghub.elsevier.com/retrieve/pii/S2001037024000230; https://dx.doi.org/10.1016/j.csbj.2024.01.023
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know