Improving compound-protein interaction prediction by focusing on intra-modality and inter-modality dynamics with a multimodal tensor fusion strategy
Computational and Structural Biotechnology Journal, ISSN: 2001-0370, Vol: 23, Page: 3714-3729
2024
- 1Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Identifying novel compound–protein interactions (CPIs) plays a pivotal role in target identification and drug discovery. Although the recent multimodal methods have achieved outstanding advances in CPI prediction, they fail to effectively learn both intra-modality and inter-modality dynamics, which limits their prediction performance. To address the limitation, we propose a novel multimodal tensor fusion CPI prediction framework, named MMTF-CPI, which contains three unimodal learning modules for structure, heterogeneous network and transcriptional profiling modalities, a tensor fusion module and a prediction module. MMTF-CPI is capable of focusing on both intra-modality and inter-modality dynamics with the tensor fusion module. We demonstrated that MMTF-CPI is superior to multiple state-of-the-art multimodal methods across seven datasets. The prediction performance of MMTF-CPI is significantly improved with the tensor fusion module compared to other fusion methods. Moreover, our case studies confirmed the practical value of MMTF-CPI in target identification. Via MMTF-CPI, we also discovered several candidate compounds for the therapy of breast cancer and non-small cell lung cancer.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2001037024003246; http://dx.doi.org/10.1016/j.csbj.2024.10.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85207249984&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39525082; https://linkinghub.elsevier.com/retrieve/pii/S2001037024003246
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know