Caste stone formation in the MgO-H 2 O-organo system – Effect of citric, malic or acetic acid and MgO reactivity on type and composition of castables
Case Studies in Construction Materials, ISSN: 2214-5095, Vol: 15, Page: e00606
2021
- 5Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Consolidation of MgO castables by organic acids is a common technique for various applications, but the distinct hardening mechanisms of caste stone formation are still poorly constrained. In this study, the individual hardening behavior was experimentally investigated by intermixing of (i) active fine-grained magnesia (MgO_A), (ii) dead-burned coarse magnesia (MgO_D) or inert quartz sand aggregates, (iii) citric acid, malic acid or acetic acid, and (iv) water. The effects of MgO purity, MgO reactivity and the type of organic additive on the evolution of hardening, Mg-organo salt formation, mineralogy and microstructure of the MgO intermixes were assessed by sound velocity measurements, XRD, FTIR spectroscopy, and electron microscopy. The reactivity of MgO_A controls the overall hardening behavior of the MgO intermixes but is strongly affected by the type and spatial distribution of the solid Mg-organo binder. MgO intermixes prepared with citric and malic acid result in stronger hardening compared to those based on acetic acid, which is caused by the interconnecting Mg-Hcitrate and Mg-malate binders vs spatially restricted and compact Mg-acetate encapsulation in micropores. MgO_D with low purity degree yields in stronger hardening, which is due to the high reactivity of accessory solid phases, such as merwinite, magnesioferrite and larnite, forming additional Ca-Fe-Mg-organo binder phases. Systematics in the above MgO-H 2 O-organo systems are discussed in the scope of hardening reaction mechanisms of castables inferred by type and compositions of distinct MgO and carboxylic acids.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2214509521001212; http://dx.doi.org/10.1016/j.cscm.2021.e00606; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85108874371&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2214509521001212; https://dx.doi.org/10.1016/j.cscm.2021.e00606
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know