Specific feature selection in wearable EEG-based transducers for monitoring high cognitive load in neurosurgeons
Computer Standards & Interfaces, ISSN: 0920-5489, Vol: 92, Page: 103896
2025
- 1Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The electroencephalographic (EEG) features for discriminating high and low cognitive load associated with fine motor activity in neurosurgeons were identified by combining wearable transducers and Machine Learning (ML). To date, in the literature, the specific impact of fine-motor tasks on surgeons’ cognitive load is poorly investigated and studies rely on the EEG features selected for cognitive load induced by other types of tasks (driving and flight contexts). In this study, the specific EEG features for detecting cognitive load associated with fine motor activity in neurosurgeons are investigated. Six neurosurgeons were EEG monitored by means of an eight-dry-channel EEG transducer during the execution of a standardized test of fine motricity assessment. The most informative EEG features of the cognitive load induced by fine motor activity were identified by exploiting the algorithm Sequential Feature Selector. In particular, five ML classifiers maximized their classification accuracy having as input the relative alpha power in Fz, O1, and O2, computed on 2-s epochs with an overlap of 50 %. These results demonstrate the feasibility of ML-supported wearable EEG solutions for monitoring persistent high cognitive load over time and alerting healthcare management.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0920548924000655; http://dx.doi.org/10.1016/j.csi.2024.103896; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85200118134&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0920548924000655; https://dx.doi.org/10.1016/j.csi.2024.103896
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know