Experimental investigation of the effects of inclinations and wicks on the thermal behavior of heat pipes for improved thermal applications
Case Studies in Thermal Engineering, ISSN: 2214-157X, Vol: 26, Page: 100997
2021
- 10Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Given the highly complex thermo-hydrodynamic features in heat pipes (HPs) but the inevitable need for efficient thermal solutions, this study investigated the effects of various wick types on the time-dependent thermal behavior of HPs. The results revealed that varying the cooling conditions and wick types in parallel is necessary for peak performance. Appropriate cooling lengths and temperatures improve the thermal limits of HPs with low-performing wicks. The composite wicks prompted faster steady performance, smooth startup, and low instabilities. Heat increment from 25 to 200 W decreased the thermal resistance from 1.75 to 0.05 °C/W. The HPs with homogeneous wicks have higher thermal resistance than those with composite wicks. Increased cooling lengths improve the performance of the former HPs. Inclining the HPs at angles relative to the horizontal position improves the HPs' thermal limits. The composite wicks minimized the effects of inclinations on the HPs’ performance. The HPs with composite multi-layered wicks presented transient profiles typical of first-order systems, whereas homogenous multi-layered wicks have complex responses upon step heat input. The transient profiles offer great insight into the instability inside the HPs. This study may guide future optimization analysis in selecting the best HPs and wicks for improved thermal management.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2214157X2100160X; http://dx.doi.org/10.1016/j.csite.2021.100997; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85105093235&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2214157X2100160X; https://dx.doi.org/10.1016/j.csite.2021.100997
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know