A comparison between nonlinear and constant thermal properties approaches to estimate the temperature in LASER welding simulation
Case Studies in Thermal Engineering, ISSN: 2214-157X, Vol: 35, Page: 102135
2022
- 6Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The nonlinear thermophysical properties significantly affect the temperature field and the appearance of the weld bead in the LASER Beam Welding (LBW). Then, it is vital to have a well-defined numerical model for analyzing the thermal behavior of the welded material. Nonetheless, many papers still address the welding simulation using constant thermal properties. In this way, this paper proposes a three-dimensional thermal analysis of an unsteady LBW aiming to compare the difference between the constant and nonlinear thermophysical properties approaches. It applied the Finite Volume Method (FVM) to solve the nonlinear three-dimensional heat diffusion equation with an enthalpy function to model the phase change using a fully implicit scheme. In traditional models, these considerations promote a significant increase in computational time for the convergence of the method. Thus, CUDA-C in-house parallel routines were implemented and executed in a Graphics Processing Unit (GPU) to solve this problem. Lab-controlled experiments validated the proposed methodology. The results highlighted the importance of using the nonlinear approach. Furthermore, a detailed study demonstrated the difficulty of knowing precisely the placement of thermocouples, given the high-temperature gradient in the welding processes. The proposed methodology demonstrated to be a faster, cheaper, and efficient way to simulate the LBW.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2214157X22003811; http://dx.doi.org/10.1016/j.csite.2022.102135; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131505082&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2214157X22003811; https://dx.doi.org/10.1016/j.csite.2022.102135
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know