Internal temperature prediction and control strategy design of anode-supported solid oxide fuel cell for hot start-up process
Case Studies in Thermal Engineering, ISSN: 2214-157X, Vol: 63, Page: 105282
2024
- 1Citations
- 10Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Reports on Thermal Engineering from Beijing Institute of Technology Provide New Insights (Internal Temperature Prediction and Control Strategy Design of Anode-supported Solid Oxide Fuel Cell for Hot Start-up Process)
2024 NOV 18 (NewsRx) -- By a News Reporter-Staff News Editor at Energy Daily News -- Investigators discuss new findings in Engineering - Thermal Engineering.
Article Description
Anode-supported solid oxide fuel cell (SOFC) has a high energy efficiency while suffering from a poor transient performance such as start-up. In this study, a model-based design method is proposed to develop a suitable strategy for the rapid hot start-up of anode-supported SOFC (AS-SOFC). First, a mathematical model is established for a 25-kW SOFC system and the internal temperature is predicted. Subsequently, three different strategies are compared during hot start-up process. The results indicate that the positive-electrolyte-negative (PEN) temperature variation magnitude is 50 K and the response time is 1300 s when the hydrogen and the air flow rates are fixed for the afterburner and the cathode. If a PID controller is employed to regulate the flow rate of H 2 to the afterburner, the PEN temperature variation magnitude decreases to 16 K with a shorter response time of 158 s. When increasing the air flow rate synchronously, the PEN temperature variation magnitude is merely 8 K, reduced by 84 % and 50 % compared with the previous strategies. Additionally, the gas temperature exiting from the afterburner declines significantly for the third control strategy. Thus, the lifetime and reliability of AS-SOFC is enhanced. The results provide a reference for the SOFC systems control such as domestic combined heat and power (CHP) and mobile applications.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know