Categorization of R134a flow-induced vibration and noise in multi-conditions and effect of thermal load on the vibration in automobile air conditioning
Case Studies in Thermal Engineering, ISSN: 2214-157X, Vol: 64, Page: 105558
2024
- 1Citations
- 1Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Xi'an Jiaotong University Researchers Have Provided New Study Findings on Thermal Engineering (Categorization of R134a flow-induced vibration and noise in multi-conditions and effect of thermal load on the vibration in automobile air ...)
2024 DEC 11 (NewsRx) -- By a News Reporter-Staff News Editor at Transportation Daily News -- Investigators publish new report on thermal engineering. According to
Article Description
The gurgling and hiss noise near thermal expansion valve (TXV) in automobile air conditioning gradually become prominent. However, the causes of noise from the flow-induced vibration (FIV) have not been confirmed. In this paper, the vibration, noise and R134a-flow patterns are recorded synchronously to investigate the FIV causes in multi-conditions. Based on different flow patterns at TXV inlet, all conditions are categorized into four types to explore the relationship of flow patterns, FIV and noise. Then two causes are summarized. Firstly, the intermittent liquid-phase FIV is attributed to the intensive evaporation in a throttling process and mainly occurs in transition from liquid-phase flow to mist flow. Secondly, the sustaining two-phase FIV occurs as long as the gas of two-phase flow accelerates through TXV. For liquid-phase FIV, the pressure drop in two-phase region and vapor quality determined by thermal load always show positive correlation with vibration. For two-phase FIV, the annular-wavy flow increases amplitude of vibration peaks, but they are distributed at the similar frequency band regardless of thermal load and flow pattern. The vibration peaks of X, Y and Z are mainly distributed at 6000 Hz–9000 Hz. Decreasing thermal load reduces Y-vibration peak by 83.7 %.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know