PlumX Metrics
Embed PlumX Metrics

Decoupling of Activation and Effector Binding Underlies ARF6 Priming of Fast Endocytic Recycling

Current Biology, ISSN: 0960-9822, Vol: 21, Issue: 7, Page: 574-579
2011
  • 48
    Citations
  • 0
    Usage
  • 107
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The small GTP-binding protein ADP-ribosylation factor 6 (ARF6) controls the endocytic recycling pathway of several plasma membrane receptors. We analyzed the localization and GDP/GTP cycle of GFP-tagged ARF6 by total internal reflection fluorescent microscopy. We found that ARF6-GFP associates with clathrin-coated pits (CCPs) at the plasma membrane in a GTP-dependent manner in a mechanism requiring the adaptor protein complex AP-2. In CCP, GTP-ARF6 mediates the recruitment of the ARF-binding domain of downstream effectors including JNK-interacting proteins 3 and 4 (JIP3 and JIP4) after the burst recruitment of the clathrin uncoating component auxilin. ARF6 does not contribute to receptor-mediated clathrin-dependent endocytosis. In contrast, we found that interaction of ARF6 and JIPs on endocytic vesicles is required for trafficking of the transferrin receptor in the fast, microtubule-dependent endocytic recycling pathway. Our findings unravel a novel mechanism of separation of ARF6 activation and effector function, ensuring that fast recycling may be determined at the level of receptor incorporation into CCPs.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know