Spectrum-irrelevant fine-grained representation for visible–infrared person re-identification
Computer Vision and Image Understanding, ISSN: 1077-3142, Vol: 232, Page: 103703
2023
- 7Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Visible–infrared person re-identification (VI-ReID) is an important and practical task for full-time intelligent surveillance systems. Compared to visible person re-identification, it is more challenging due to the large cross-modal discrepancy. Existing VI-ReID methods suffer from heterogeneous structures and the different spectra of visible and infrared images. In this work, we propose the Spectrum-Insensitive Data Augmentation (SIDA) strategy, which effectively alleviates the disturbance in the visible and infrared spectra and forces the network to learn spectrum-irrelevant features. The network also compares samples with both global and local features. We devise a Feature Relation Reasoning (FRR) module to learn discriminative fine-grained representations according to the graph reasoning principle. Compared to the most commonly used uniform partition, our FRR better adopts to the case of VI-ReID, in which human bodies are difficult to align. Furthermore, we design the dual center loss for learning the global feature in order to maintain the intra-modality relations, while learning the cross-modal similarities. Our method achieves better convergence in training. Extensive experiments demonstrate that our method achieves state-of-the-art performance on two visible–infrared cross-modal Re-ID datasets.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1077314223000838; http://dx.doi.org/10.1016/j.cviu.2023.103703; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85153504159&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1077314223000838; https://dx.doi.org/10.1016/j.cviu.2023.103703
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know