PlumX Metrics
Embed PlumX Metrics

Current knowledge of immune priming in invertebrates, emphasizing studies on Tenebrio molitor

Developmental & Comparative Immunology, ISSN: 0145-305X, Vol: 127, Page: 104284
2022
  • 11
    Citations
  • 0
    Usage
  • 50
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Vertebrates rely on the most sophisticated adaptive immunity to defend themselves against various pathogens. This includes immunologic memory cells, which mount a stronger and more effective immune response against an antigen after its first encounter. Unlike vertebrates, invertebrates’ defense completely depends on the innate immunity mechanisms including humoral and cell-mediated immunity. Furthermore, the invertebrate equivalent of the memory cells was discovered only recently. Since the discovery of transgenerational immune priming (TGIP) in crustaceans, numerous findings have proven the IP in invertebrate classes such as insects. TGIP can be induced through maternal priming pathways such as transcriptional regulation of antimicrobial peptides, and also paternal IP including the induction of proPO system activity. We appraise the diversity and specificity of IP agents to provide sustained immunologic memory in insects, particularly T. molitor in the review. An understanding of IP (more so TGIP) response in T. molitor will deepen our knowledge of invertebrate immunity, and boost the mass-rearing industry by reducing pathogen infection rates.

Bibliographic Details

Ali Mohammadie Kojour, Maryam; Baliarsingh, Snigdha; Jang, Ho Am; Yun, Keunho; Park, Ki Beom; Lee, Jong Eun; Han, Yeon Soo; Patnaik, Bharat Bhusan; Jo, Yong Hun

Elsevier BV

Immunology and Microbiology; Biochemistry, Genetics and Molecular Biology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know