Closed-loop photo- and electrocatalysis using floatable hierarchical hydrogel device for efficient waste-derived fuel production
Device, ISSN: 2666-9986, Vol: 2, Issue: 12, Page: 100515
2024
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
Continuous and sustainable fuel production is essential for transitioning to a green-energy society. Solar-fuel production via photocatalysis is renewable but limited by vulnerability to weather dependence and suboptimal efficiency, necessitating an innovative solution. We present a feedback-controlled closed-loop system integrating photo- and electrocatalysis within a compact, floatable device. This system compensates for solar-fuel production shortfalls with electrochemical methods, optimizing catalyst pairings for high activity, selectivity, and durability. The unique floatability maximizes solar-to-fuel conversion efficiency with gas-liquid interface-operating photocatalysts and fully utilized submerged electrocatalysts. This dual-mode elastomer-hydrogel device achieves a plastic-waste-reforming activity of 269 mmol-H 2 /h⋅m 2 using concentrated sunlight and also demonstrates nearly 100% Faradaic efficiency and selectivity in formate production. Scaling up to 1 m 2 yields 23.7 mmol/h and 3.05 L/day hydrogen from polyethylene terephthalate (PET) bottles under natural sunlight, maintaining stable production over a month. This closed-loop system shows a promise for steady and economically viable fuel production.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know