Role of reactive oxygen species in the pathogenesis of diabetic nephropathy
Diabetes Research and Clinical Practice, ISSN: 0168-8227, Vol: 82, Issue: SUPPL. 1, Page: S42-S45
2008
- 214Citations
- 113Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations214
- Citation Indexes214
- 214
- CrossRef148
- Captures113
- Readers113
- 113
Article Description
There is an increasing evidence that reactive oxygen species (ROS) play a major role in the development of diabetic complications. Oxidative stress is increased in diabetes and the overproduction of ROS in diabetes is a direct consequence of hyperglycemia. Various types of vascular cells including renal cells are able to produce ROS under hyperglycemic condition. Both NADPH oxidase and mitochondrial electron gradient play roles in hyperglycemia-induced ROS generation. In addition to their ability to directly inflict macromolecular damage, ROS can function as signaling molecules. ROS mediate hyperglycemia-induced activation of signal transduction cascades and transcription factors leading to transcriptional activation of profibrotic genes in the kidney. Furthermore, ROS-activated signaling molecules generate and signal through ROS and thus ROS act as a signal amplifier. Intensive glycemic control and inhibition of angiotensin II delay the onset and progression of diabetic nephropathy, in part, through prevention of overproduction of ROS. Conventional and catalytic antioxidants have been shown to prevent or delay the onset of diabetic nephropathy. Combination of strategies to prevent overproduction of ROS and to increase the removal of preformed ROS may prove to be effective in preventing the development and progression of diabetic nephropathy.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0168822708004397; http://dx.doi.org/10.1016/j.diabres.2008.09.017; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=55249118568&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/18845352; https://linkinghub.elsevier.com/retrieve/pii/S0168822708004397; https://dx.doi.org/10.1016/j.diabres.2008.09.017
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know