A comprehensive lemongrass ( Cymbopogon citratus ) leaf dataset for agricultural research and disease prevention
Data in Brief, ISSN: 2352-3409, Vol: 53, Page: 110104
2024
- 7Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef1
- Captures17
- Readers17
- 17
Dataset Description
This article introduces a dataset of 10,042 Lemongrass ( Cymbopogon citratus ) leaf images, captured with high quality camera of a mobile phone in real-world conditions. The dataset classifies leaves as “Dried,” “Healthy,” or “Unhealthy,” making it useful for machine learning, agriculture research, and plant health analysis. We collected the plant leaves from the Vishwakarma University Pune herbal garden and the captured the images in diverse backgrounds, angles, and lighting conditions. The images underwent pre-processing, involving batch image resizing through FastStone Photo Resizer and subsequent operations for compatibility with pre-trained models using the ‘preprocess_input’ function in the Keras library. The significance of the Lemongrass Leaves Dataset was demonstrated through experiments using well-known pre-trained models, such as InceptionV3, Xception, and MobileNetV2, showcasing its potential to enhance machine learning model accuracy in Lemongrass leaf identification and disease detection. Our goal is to aid researchers, farmers, and enthusiasts in improving Lemongrass cultivation and disease prevention. Researchers can use this dataset to train machine learning models for leaf condition classification, while farmers can monitor their crop's health. Its authenticity and size make it valuable for projects enhancing Lemongrass cultivation, boosting crop yield, and preventing diseases. This dataset is a significant step toward sustainable agriculture and plant health management.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2352340924000775; http://dx.doi.org/10.1016/j.dib.2024.110104; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85184151939&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38357460; https://linkinghub.elsevier.com/retrieve/pii/S2352340924000775; https://dx.doi.org/10.1016/j.dib.2024.110104
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know