Double JPEG compression with forgery detection
Digital Signal Processing, ISSN: 1051-2004, Vol: 158, Page: 104954
2025
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Detecting modified images has become increasingly crucial in combating fake news and protecting people's privacy. This is particularly significant for JPEG images, which are widely used online. Tampering with JPEG images often involves recompression using a different quantization table, which alters the histograms of the original image's discrete cosine transform (DCT) coefficients. This study exploits this double compression effect to propose a novel deep learning model that combines a CNN and a stacked residual bidirectional long short-term memory (Bi-LSTM) model that incorporates self-attention mechanisms. A CNN model is initially used to learn the characteristics of DCT coefficients and quantization tables extracted from JPEG files. Subsequently, these features are fed into a stacked residual Bi-LSTM model with an attention mechanism to effectively capture the data's long-term forward and backward relationships. By leveraging the strengths of these diverse techniques, we construct a deep Bi-LSTM with up to five layers, which achieves superior predictive performance compared to existing methods. Our model demonstrates its potential for the robust detection and localization of JPEG forgery.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know